GEODESIC COMPLETENESS FOR SOBOLEV Hs-METRICS ON THE DIFFEOMORPHISMS GROUP OF THE CIRCLE

نویسندگان

  • JOACHIM ESCHER
  • BORIS KOLEV
چکیده

We prove that the weak Riemannian metric induced by the fractional Sobolev norm H on the diffeomorphisms group of the circle is geodesically complete, provided s > 3/2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Right-invariant Sobolev Metrics of Fractional Order on the Diffeomorphisms Group of the Circle

In this paper we study the geodesic flow of a right-invariant metric induced by a general Fourier multiplier on the diffeomorphisms group of the circle and on some of its homogeneous spaces. This study covers in particular right-invariant metrics induced by Sobolev norms of fractional order. We show that, under a certain condition on the symbol of the inertia operator (which is satisfied for th...

متن کامل

Geodesic Distance for Right Invariant Sobolev Metrics of Fractional Order on the Diffeomorphism Group. Ii

The geodesic distance vanishes on the group Diffc(M) of compactly supported diffeomorphisms of a Riemannian manifold M of bounded geometry, for the right invariant weak Riemannian metric which is induced by the Sobolev metric Hs of order 0 ≤ s < 1 2 on the Lie algebra Xc(M) of vector fields with compact support.

متن کامل

Projective structure and integrable geodesic flows on the extension of Bott-Virasoro group

This is a sequel to our paper (Lett. Math. Phys. (2000)), triggered from a question posed by Marcel, Ovsienko, and Roger in their paper (1997). In this paper, we show that the multicomponent (or vector) Ito equation, modified dispersive water wave equation, and modified dispersionless long wave equation are the geodesic flows with respect to an L2 metric on the semidirect product space ̂ Diffs(S...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

An Overview of the Riemannian Metrics on Spaces of Curves Using the Hamiltonian Approach

Here shape space is either the manifold of simple closed smooth unparameterized curves in R or is the orbifold of immersions from S to R modulo the group of diffeomorphisms of S. We investige several Riemannian metrics on shape space: L-metrics weighted by expressions in length and curvature. These include a scale invariant metric and a Wasserstein type metric which is sandwiched between two le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013