GEODESIC COMPLETENESS FOR SOBOLEV Hs-METRICS ON THE DIFFEOMORPHISMS GROUP OF THE CIRCLE
نویسندگان
چکیده
We prove that the weak Riemannian metric induced by the fractional Sobolev norm H on the diffeomorphisms group of the circle is geodesically complete, provided s > 3/2.
منابع مشابه
Right-invariant Sobolev Metrics of Fractional Order on the Diffeomorphisms Group of the Circle
In this paper we study the geodesic flow of a right-invariant metric induced by a general Fourier multiplier on the diffeomorphisms group of the circle and on some of its homogeneous spaces. This study covers in particular right-invariant metrics induced by Sobolev norms of fractional order. We show that, under a certain condition on the symbol of the inertia operator (which is satisfied for th...
متن کاملGeodesic Distance for Right Invariant Sobolev Metrics of Fractional Order on the Diffeomorphism Group. Ii
The geodesic distance vanishes on the group Diffc(M) of compactly supported diffeomorphisms of a Riemannian manifold M of bounded geometry, for the right invariant weak Riemannian metric which is induced by the Sobolev metric Hs of order 0 ≤ s < 1 2 on the Lie algebra Xc(M) of vector fields with compact support.
متن کاملProjective structure and integrable geodesic flows on the extension of Bott-Virasoro group
This is a sequel to our paper (Lett. Math. Phys. (2000)), triggered from a question posed by Marcel, Ovsienko, and Roger in their paper (1997). In this paper, we show that the multicomponent (or vector) Ito equation, modified dispersive water wave equation, and modified dispersionless long wave equation are the geodesic flows with respect to an L2 metric on the semidirect product space ̂ Diffs(S...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملAn Overview of the Riemannian Metrics on Spaces of Curves Using the Hamiltonian Approach
Here shape space is either the manifold of simple closed smooth unparameterized curves in R or is the orbifold of immersions from S to R modulo the group of diffeomorphisms of S. We investige several Riemannian metrics on shape space: L-metrics weighted by expressions in length and curvature. These include a scale invariant metric and a Wasserstein type metric which is sandwiched between two le...
متن کامل